

Bearing reliability calculation

System level bearing life vs. reliability, KISSsoft release 03-2017

EES KISSsoft GmbH

Hauptstrasse 7 6313 Menzingen Switzerland

Tel: +41 41 755 33 20 h.dinner@EES-KISSsoft.ch www.EES-KISSsoft.ch

SHARING KNOWLEDGE

1 Document information

1.1 Document change record

Revision	Date	Author	Comments
0	15.5.15	HD	Original document

1.2 Table of content

1 Doci	ument information	2
1.1	Document change record	2
1.2	Table of content.	
1.3	References	2
2 Bear	ring reliability of a industrial gearbox shaft	
2.1	Basic model of shaft	
2.2	Shaft rough sizing	
2.3	Finalizing the shaft model	6
2.4	Calculation of the shaft	7
2.5	Bearing reliability	
2.6	Variation of bearing reliability	
3 Bear	ring reliability of a complex vehicle transmission shaft system	
3.1	Files	
3.2	Reliability curves	
3.3	Design change for higher reliability	

1.3 References

[1] KISSsoft 03-2017A

2 Bearing reliability of a industrial gearbox shaft

2.1 Basic model of shaft

Let us use two SRB, a pinion and a gear on the shaft. The shaft has a speed of 205RpM and a power of 400kW is transmitted.

KISSsoft (914) - Shaft calculation - Demo-Shaft-0	1-Step-01.W10	– 🗆 🗙
File Project View Calculation Report Graphics		
🗋 🌰 🚠 🗔 🖾 Ση 🔄 😂 Σ		KISS_{SOFT}
		Release 03/2017A
Elements-tree 8	Shaft editor Basic data Strength	
▼		4 1 2 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Modules Projects Elements-tree		
Manual & X		
> General > Toothing		
> Shafts and Bearings		, e
 Connections Springs 	<	> X
> Belts and chain drives > Automotive	Force and support symbol size Font size	H
> Various > KISSsys	Shafts	8
> Bibliography and Index		
	Label Y [mm] Operating temperature [°C] Speed [1/min] Speed Direction of rotation Material Display	
	1 1 1 Shaft 1 0.0000 20.0000 205.0000 Basic dodtwise C45 (1) Yes	
		Ф ×
Manual Search Examples	Results Information Messages Graphics list Elements-editor	INCONCISTENT

Change the shaft material to 18CrNiMo7-6. Either in the table shown below:

Sha	fts							
	Label	Y [mm]	Operating temperature [°C]	Speed [1/min]	Speed	Direction of rotation	Material	Display
		. []	operating temperature [C]	Speed [1/mm]	Speed	Direction of rotation	Material	Dispidy
1	Shaft 1	0.0000	20.0000	205.0000	Basic	clockwise	18CrNiMo7-6	Yes
						1		

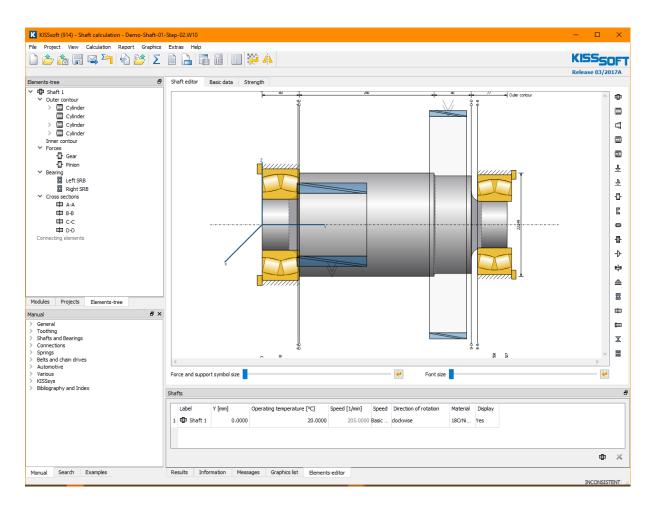
Or in the element editor

Elements-editor					
Label		Shaft 1			^
Drawing number		Input			
Position in global system	Y	0.0000	mm		
Operating temperature	т	20.0000	°C		
Ambient density	ρ	1.2000	kg/m³		
Speed	n	205.0000	1/min 🗌		
Direction of rotation		dockwise 🔻			
Material		18CrNiMo7-6, Case-carburized steel, case-hardened		÷	

See file "Demo-Shaft-01-Step-01.W10"

2.2 Shaft rough sizing

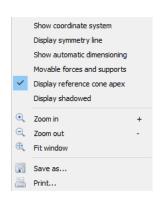
Use the shaft rough sizing function with the below settings:

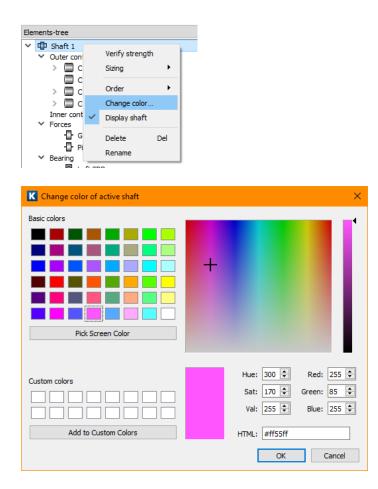


K Rough sizing	×
General data	
Equivalent stress σ_v 200.0000	N/mm ²
Change only cylinder diameters	
Rolling bearings	
Consider bearings in sizing	
Required service life NI 20000.0000	h
Match shaft diameter to bearing bore	
☑ Use bearing types as defined in model	
Move bearing if needed	
OK	Cancel

A message appears

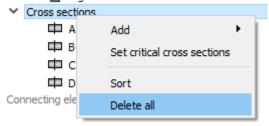
K Progress of calculation					
Error in message ressources. Invalid ID (2/2)	70%				
Abort					


The proposed shaft and bearing geometry is then:


See file "Demo-Shaft-01-Step-02.W10"

To work faster, change the display by removing

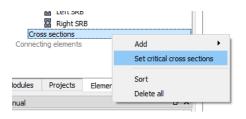
- Symmetry line
- Coordinates system
- Shaded view



Change the shaft color to something more pleasant:

See file "Demo-Shaft-01-Step-03.W10"

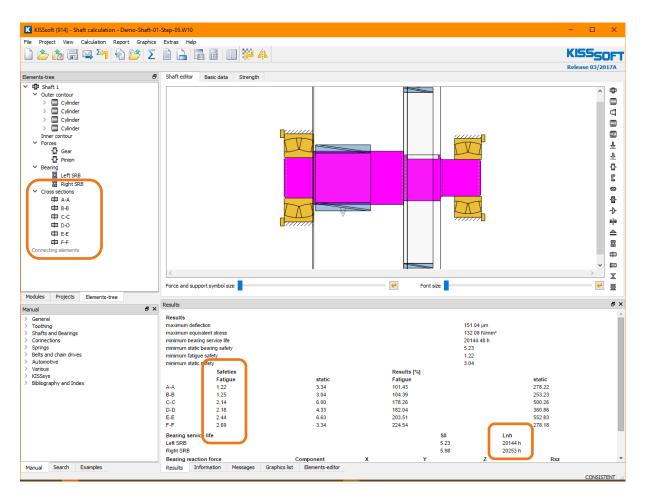
Delete the cross sections A-A to D-D as we do not need them right now.


2.3 Finalizing the shaft model

Change the shaft elements diameter and length to get a more reasonable design. Move the gear and the pinon accordingly. Add relief grooves and others.

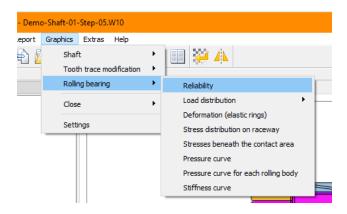
KISSsoft (914) - Shaft calculation - Demo-Shaft-01	-Step-04.W10	– 🗆 X
File Project View Calculation Report Graphics		
🗋 🚖 🚠 🗔 🖾 Σή 🗟 😂 Σ		KISSSOFT
		Release 03/2017A
Elements-tree 8	Shaft editor Basic data Strength	Release 05/2017R
✓ III Shaft 1		
 Dash 1 Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder Timer contour Forces Gear Pinion Bearing Left SRB Right SRB Connecting elements 	Force and support symbol size	 中□□□□ ± ± 0 □ ○ 4 · + → ▲ 8 中 中 X 要 > ↓ ● □ □ □ ± ± 0 □ ○ 4 · + → ▲ 8 中 中 X 要
Modules Projects Elements-tree	Shafts	8
Manual 🗗 🗶		
 General Strate and Bearings Granections Sgrings Belts and chain drives Automotive Various KISSys Bibliography and Index 	Label Y [mm] Operating temperature [*C] Speed [1/mn] Speed Direction of rotation Material Display 1 1 10 Shaft 1 0.0000 20.0000 Basic doddwise 18C/Ni Yes	
		Φ×
Manual Search Examples	Results Information Messages Graphics list Elements-editor	INCONSISTENT

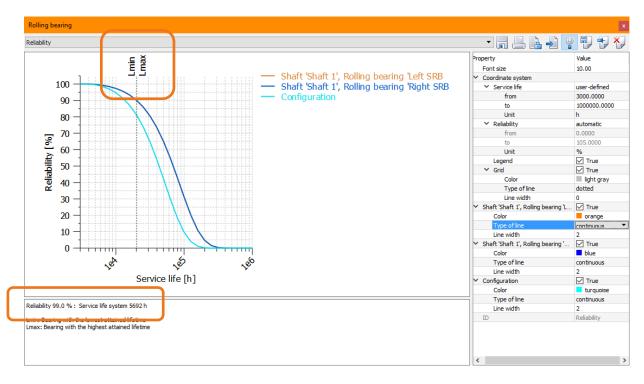
See file "Demo-Shaft-01-Step-04.W10"


For the strength rating of the shaft with the changed geometry, select:

2.4 Calculation of the shaft

Finally, run the calculation. You will see


- The critical shaft cross sections A-A to F-F
- The bearing life > 20'000h
- The shaft safety factors > 1.20



See file "Demo-Shaft-01-Step-05.W10"

2.5 Bearing reliability

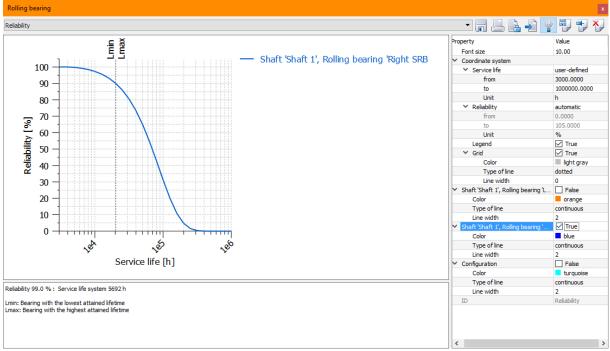
Go to the below shown graphic

Note

- Set the x axis to 3'000h ... 1'000'000h
- Recommended line width is 2
- Activate grid and legend
- The two reliability lines for the two bearings are almost identical because the two bearings have almost identical life.

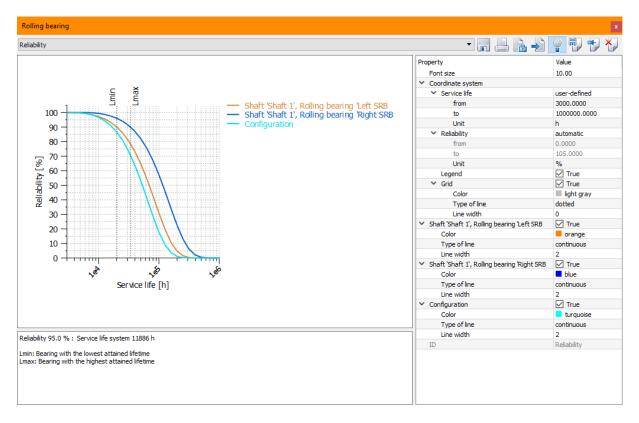
Explanations

- Lmin is the achieved lifetime for the failure probability as defined in the module specific settings (by default, this is 10% or 90% reliability):
- The system reliability is currently 99% and then, a life of 5692h results. The system target reliability can be defined in the module specific settings as shown below


Calculations Rolli	ing bearings Shaft edite	r				
General						
Display critical	bearing					
Save user defir	ned bearings in calculation fil	e				
	in each bearing separately					
Define number	of slices for roller bearings					
Axial clearance		0 ₄		0.0100		
Failure probability		n		10.0000	%	
Required service lif	je	N.		20000.0000	h	J
Maximum life modif	ication factor	GISO,max		50.0000		
Surface roughness	of housing		N7 Rz=8.0 (Turned with diamond)	•		
Friction						
Calculation method	I		SKF Catalog 2013	•		
Take oil level in	to account					
Oil level		hou		0.0000	mm	
Lubrication			Oil bath lubrication	•		
Seals torque loss			SKF main catalog according to chosen	calculation method 🔻		
Bearing manufactu	rer					
FAG	NSK		IBC			
🗹 Timken	SKF	🗹 Коуо	KRW			
NACHI						

General			
Consider deformation due to shearing			
Use alternative Campbell diagram algorithm			
Activate force center point offset			
Use 2013 solver			
Write temporary results in CSV files with ext	ension .tmp		
Reference temperature	TR	20.0000] ° C
Reference point for thermal expansion	ye.	0.0000	mm
Shear correction coefficient	к	1.1000	
Standard radius at shoulders	۲s	0.0100	mm
Node density		norma	
Required system reliability		99.0000	%
✓ Iterative load distribution calculation			
Number of slices			1
Number of slices		11	1
Strength			
Entry for different numbers of load cycles (fatig	ue strength)		1
Bending:torsion relationship (x:1)		1.0000	

Only reliability curve for left bearing shown



2.6 Variation of bearing reliability

Let us define that we want a system reliability of 95%. And for some reason, let us use a bearing on the right side with a higher inner diameter

K Module	pecific settings						×			
Calculation	Rolling bearings	Shaft editor								
General										
Non-li	near shaft									
Consi	der deformation due to s	shearing								
🗌 Use a	Use alternative Campbell diagram algorithm									
Activa	te force center point of	ffset								
Use 2	013 solver									
Urite	temporary results in CS	V files with exte	nsion .tmp							
Referenc	e temperature		TR			20.0000	°C			
Referenc	e point for thermal expa	insion	Уe			0.0000	mm			
Shear cor	rection coefficient		к			1.1000				
Standard	radius at shoulders		٢s			0.0100	mm			
Node der	sitv			normal						
	system reliability					95	%			
						35	/8			
Tooth tra	ce modification									
✓ Iterat	ive load distribution calc	ulation								
Number o	f slices					11				
Strength										
Entry for	different numbers of loa	ad cycles (fatigu	e strength)							
Bending:	orsion relationship (x: 1))				1.0000				
						OK	Cancel			

We then find the system life at reliability of 95% at 11'886h and the below reliability curves.

See file "Demo-Shaft-01-Step-06.W10"

3 Bearing reliability of a complex vehicle transmission shaft system

3.1 Files

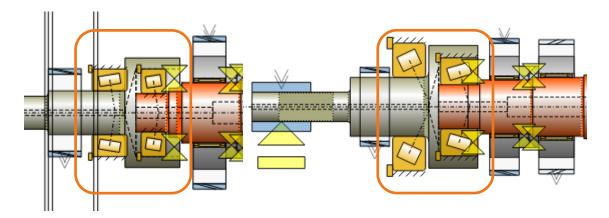

For this demonstration, use the file as shown below which is part of the software installation:

Shafts 7 (truck transmission)

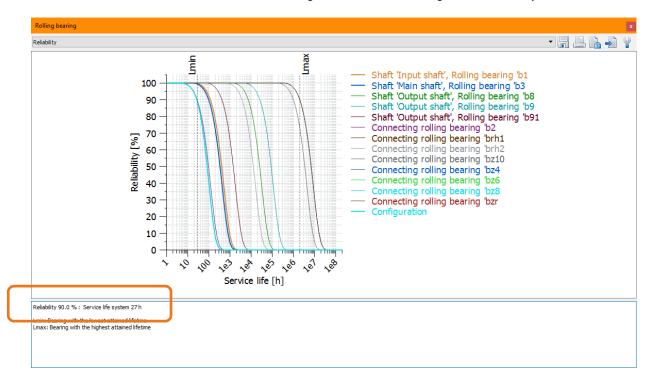
3.2 Reliability curves

Open the file and run the calculation. Open the graphic for bearing reliability. You will get the below shown results and the curves.

Note that the reliability curves are based on the most complex bearing rating method activated. In the below case, all four rating methods (basic rating, modified basic rating, reference rating and modified reference rating are shown, hence, reliability curves are based on modified reference rating).



We can see from the results table that bearing b1 has only 3h life and bearing b2 has only 1h life. These two determine the system life.


See file Demo-Shaft-02-Step-01.W10

3.3 Design change for higher reliability

Now, we can change the design in the critical area. Left: old design. Right: new design.

When we re-run the calculation with the new design, we now find a change in the reliability curves:

See file Demo-Shaft-02-Step-02.W10