Design – Manufacture – Measure

Dr. Inho Bae, Hanspeter Dinner

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

Slide 1 | 6th October 2020 | KISSsoft Webinar Design – Manufacture – Measure

Characteristics of manufactured gear \rightarrow NOT known

Designed gear / reference

Transmission error = \checkmark

Load distribution = \checkmark

Manufactured gear

Transmission error = ?

Load distribution = ?

Basic working principle in KISSsoft

Reference + Variants \rightarrow LTCA

🚵 🖫 🖙 🍋 🈂 Σ 🗎 🗷 🚔 🎬

KISSsoft

KISSsoft

đΧ

8

Use case 1: Acceptance of gears

Use case 2: Selection of economical process

Use case 3: Design or process modification

STEP 1: KISSsoft Input: Macro geometry

Macro geometry input of the designed gear

Basic data Reference pro	file Manufacturing	Tolerances Mo	difications Rating Factors	Contact analysis							
Geometry											
Normal module m _n	2	2.6800 mm 🔶	Gear	1 Gear 2	Details						
Normal pre angle an	21	.2328 ° 🔶	Numbeteeth z	11 40]						
Gear 1 he	lix right hand	•	Facewidth b 23	3.3000 20.8000	mm 🔸						
Helix angce circle β	22	2.5000 • +	Profilicient x	0.7680 -0.3694	••						
Center distance a	75	5.0000 mm 🗆 🖊	Quali2013) A	6 6							
Material and lubrication											
Gear 1 Case-hardening steel 🔹 18CrNiMo7-6, case-hardened, ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jom 🔹 🕂											
Gear 2 Case-hardening steel 🔹 18CrNiMo7-6, case-hardened, ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jom 👻 🕂											
Lubrication 0il: ISO-VG 220 🔹 🗧 Oil bath lubrication 👻 🛨											
Basic data Reference pro	file Manufacturing	Tolerances Mo	difications Rating Factors	∑ Contact analysis							
Machining step Gear 1			Machining step Gear 2								
Selection	Final machining (v \bullet	1	Selection	Final machining (v $ imes$	i						
Final machining Gear 1			Final machining Gear 2								
Tool selection	Reference profile 💌	↔ 1	Tool selection	Reference profile 🝷	↔ 1						
Input	Factors 🔹		Input	Factors 👻							
Select refce profile	Own Input 👻	+	Select refce profile	Own Input 🔹	+						
Designation	Input		Designation	Input							
Dedendum coefficient h*			Dedendum coefficient h*m	+							
Dedendum coefficient n rp	1.4599										
Root radius coefficien ρ^*_{TP}	0.3000		Root radius coefficien ρ^*_{rp}	0.3000	+ 😓						

STEP 1: KISSsoft Input: Micro geometry

Ge	ar 1					
Gear	Flank	Modification type	Value [µm]	Factor 1	Factor 2	Status
Gear 1	left	Crowning	3.0000			active
Gear 1	left	Helix angle modification, tapered or conical	-4.0000			active
Gear 1	left	Pressure angle modification (value)	6.0000			active
Gear 1	left	Profile crowning, roll length-centered	3.0000			active
Gear 1	right	Helix angle modification, tapered or conical	6.0000			active
Gear 1	right	Crowning	3.0000			active
Gear 1	right	Pressure angle modification (value)	6.0000			active
Gear 1	right	Profile crowning, roll length-centered	3.0000			active
Pro	ofile	Lea	ad			

📐 🔶 🍳 🖦 🔍 🔍 🌒 🥊 🗎 🖓 🖏

Gear 2

Gear	Flank	Modification type	Value [µm]	Factor 1	Factor 2	Status
Gear 2	left	Crowning	3.0000			active
Gear 2	left	Profile crowning, roll length-centered	6.0000			active
Gear 2	right	Helix angle modification, tapered or conical	20.0000			active
Gear 2	right	Tip relief, linear	25.0000	2.0750		active
Gear 2	right	Profile crowning, roll length-centered	3.0000			active
Gear 2	right	Crowning	3.0000			active

STEP 1: KISSsoft Input: Manufacturing deviations from gear quality

Potentially, 2^n+1 calculations, where n is the number of independent modifications per flank plus one calculation for middle of tolerance field for all modifications, here $n=7 \rightarrow 129$ combinations for one single torque level. Analysis can be done for several torque levels simultaneously.

K	ISScoft	K Mod	ifications	sizing					– 🗆 X
(100	1555011	Conditi	ons I	Conditions II Results	Graph	nic I Graphic II			
KISSsoft-Entwicklungs-Version KISSsoft AG CH-8608 BUBIKON		No.	Gear	Synchronize with no. Fla	lank	Modification type	Number of steps	Value (min) [µm]	Value (max) [µm]
		1	Gear 1	1 left	ft	Crowning	3	-11.000	0 11.0000
Name : CylGearPair 1 (spur gear) Description: KISSsoft example		2	Gear 1	2 left	ft	Helix angle modification, tapered or conical	3	-10.000	D 10.0000
Changed by: hdinner on: 06.10.2020 at: 08:25:27		3	Gear 1	3 left	ft	Pressure angle modification (value)	3	-10.000	0 10.0000
Manufacturing tolerances		4	Gear 1	4 left	ft I	Profile crowning, roll length-centered	3	-9.500	0 9.5000
-		5	Gear 1	5 righ	ght I	Helix angle modification, tapered or conical	3	-10.000	0 10.0000
Tolerances for cylindrical gears ISO 1328-1:2013 (JIS B 1702-1:2016) Accuracy grade (A) 6 6		6	Gear 1	6 righ	ght	Crowning	3	-12.000	0 12.0000
Single pitch deviation (µm) +- 11.0 +- 11.0 (fpT) Normal base pitch deviation (µm) +- 10.0 +- 10.4 (fphT)		7	Gear 1	7 righ	ght I	Pressure angle modification (value)	3	-9.500	9.5000
Total cumulative pitch deviation (µm) 33.0 41.0 (FpT)		8	Gear 1	8 riat	aht I	Profile crowning, roll length-centered	3	-9,500	9,5000
Profile form deviation (µm) 12.0 (ffaT)		-				5/			
Profile slope deviation (μm) +- 9.5 +- 9.5 (fHaT)		9	Gear 2	- Pell	π	Crowning	3	-12.000	0 12.0000
Total profile deviation (µm) 15.0 15.0 (FaT) Helix form deviation (µm) 11.0 12.0 (ffbT)		10	Gear 2	10 left	ft I	Profile crowning, roll length-centered	3	-9.500	9.5000
Heix slope deviation (µm) +- 10.0 (HbT)						untra and a strength of the second		10.000	
Total helix deviation (µm) 15.0 16.0 (FbT)		11	Gear 2	11 101	π	Helix angle modification, tapered or conical	3	-10.000	0 10.0000
Runout (µm) 30.0 37.0 (FrT)		12	Gear 2	12 left	ft '	Tip relief, linear	3	-12.000	0 12.0000
Single flank composite, tooth-to-tooth (µm) 10.0 (fisT)		10		10 11		De Classer de la cultura de la cultura d		0.50	0.5000
Total tangential composite deviation (µm) 43.0 51.0 (FisT)		13	Gear 2	13 rigr	gnt	Profile crowning, roll length-centered	3	-9.500	9.5000
Sector pitch deviation (µm) +- 21.0 +- 27.0 (Fp2/81) Difference between adjacent pitches (µm) 15.0 16.0 (fµT)		14	Gear 2	14 righ	ght (Crowning	3	-12.000	0 12.0000
Tolerances for cylindrical gears ISO 1328-1:1995 (JIS B 1702-1:1998)		<							>
Accuracy grade (Q) 6 6									
Single pitch deviation (µm) +- 10.0 +- 11.0 (fpt)									
Normal base pitch deviation (µm) +- 9.4 +- 10.3 (fpb)									
Total cumulative pitch deviation (µm) 36.0 47.0 (Fp)	F	Report le	ngth	Short form V		Accept Delete Report	Calculate	Cancel	Save Restore
Contraction deviation (une) . 47.0 . 05.0 (Eab/0)									

STEP 2: LTCA of designed gear

Loaded contact analysis for reference geometry, considering system level deformation

STEP 2: LTCA of designed gear with tolerance variation

Loaded contact analysis for reference geometry with manufacturing tolerances / deviations superimposed, considering system level deformation

STEP 2: LTCA of designed gear

Resulting characteristics

without manufacturing deviation

Results (Contact analysis)

		min	max	Δ	μ
Transmission error	(µm)	-29.8907	-26.5268	3.3639	-27.6108
Excitation force	(N)	3773.9648	4619.4325	845.4677	4357.9199
Tangents Stiffness curve	(N/µm)	190.1098	287.3960	97.2862	255.2770
Secants stiffness curve	(N/µm)	142.2260	158.9537	16.7277	152.8458
Line load	(N/mm)	0.0000	908.4017	908.4017	210.1171
Torque Gear 1	(Nm)	64.1451	64.1575	0.0124	64.1510
Torque Gear 2	(Nm)	224.1770	227.8568	3.6798	225.5483
Speed, gear 2	(1/min)	273.8453	275.9028	2.0575	274.9989
Power loss	(W)	155.8756	267.0384	111.1628	223.8706
Efficiency	(%)	96.0250	97.6797	1.6547	96.6676
Contact temperature	(°C)	74.5472	211.7577	137.2106	99.8802
Thickness of lubrication film	(µm)	0.0697	0.4525	0.3828	0.1493
Active flank area of usage (diameter) Gear 1	(mm)	15.4062	20.1640	4.7578	
Active flank area of usage (diameter) Gear 2	(mm)	56.3091	59.7814	3.4722	
Hertzian pressure	(N/mm²)		2116.2030		809.0912
Tooth root stress gear 1 (graphical method)	(N/mm²)		377.8748		155.4234
Tooth root stress gear 1 (at 30° tangents)	(N/mm ²)		375.2064		154.3937
Tooth root stress gear 2 (graphical method)	(N/mm²)		309.0625		173.8598
Tooth root stress gear 2 (at 30° tangents)	(N/mm²)		298.7796		166.2276
Safety against scuffing			1.9668		
Transverse contact ratio under load	[εα]		1.1789		
	min		0.6316		
	μ		0.9845		
	max		1.1789		
	side I, II		1.1789 / 0.6316	i	
Overlap ratio under load	[εβ]		0.4316		
Total contact ratio under load (max)	[εγ]		1.6105		
Sound pressure level (according to Masuda)	[dB(A)]		40.7		

STEP 3: KISSsoft output: Measurement grid

Export measurement grid report to be used in GAMA

Gear	Gear 1						
Measurement grid area	rea Tooth flank						
Format							
Measurement machine	Gleason						
Number of columns	9						
Number of rows	5						
Distance from side I	2.3300 mm 🔮						
Distance from side II	2.3300 mm						
Distance from root form diame	ter 0.5 mm						
Distance from tooth tip	0.5 mm						

*****	*********	NOMT	NAT COORD	***** TNDTF	***	**** 	********	********				
*		***	PINION CONC	AVF *	**	0101		*				
*								*				
* PAR	г # :		NUMBI	ER OF	TER	етн 9	% Z ! 11	*				
* DCT	150 Z11 Modi		PINIC	DN T	unat		222.02.200					
* DIF	F. ANG: % DE	DI ! -16.2	182 REF.	PT.	***	****	* * * * * * * * * * * *	NONT			~~~~~	*********
*					Ĵ.			NOM11	NAL - COORD	INATE - LI	51	
* NUM	BER COLUMNS:	! 9	NUMBI	ER LI	*				JEAR CONCAV.			*
*					* P)	ART :	# :		NUMB	ER OF TEET	H % Z ! 40	
* DATI	E: 23 Apr 2	020	TIME: 09	:40:5	* D	CT15	J Z40 Modi		GEAR	THEORETI	CAL 23 Apr	2020
****	*******	******	******	****	* D	IFF.	ANG: % DEI	DI ! -4.05	12 REF.	PT.: ! (5	, 3)	4
*J :	и х	Y	Z	XN	*							*
*====					* N	UMBEI	R COLUMNS:	! 9	NUMB	ER LINES:	! 5	4
1 1	14.8311	-4.6709	-9.3200	. (*							*
1 2	15.9476	-4.5383	-9.3200	.2	* Di	ATE:	23 Apr 20	020	TIME: 09	:47:39	UNIT	S:mm *
1 3	17.1005	-4.2145	-9.3200	- 3	***	****	********	*******	*******	*******	*******	********
14	18.2695	-3.7167	-9.3200	.4	* J	I	х	Y	Z	XN	YN	ZN *
1 5	19.4370	-3.0522	-9.3200	.5	*===	1				2045		1005
2 1	15.0860	-3.7673	-6.9900	.(1	55.3627	2.62/1	-8.3200	.3045	9334	1895
2 2	16.1924	-3.5675	-6.9900	. 2	1	2	56.3769	2.9930	-8.3200	.3679	9102	1896
2 3	17.3237	-3.1747	-6.9900	3	1	2	57.3052	3.4200	-8.3200	.4201	00/4	1094
2 4	18.4605	-2.6072	-6.9900	. 4	1	4	58.3863	3.9346	-8.3200	.4/44	8599	1882
2 5	19.5858	-1.8735	-6.9900	.5	1	3	59.3795	4.5026	-0.3200	.5157	0372	10/5
3 1	15.2859	-2.8496	-4.6600	.1	2	1	55.3957	2 1525	-6.2400	.2906	9301	10/9
3 2	16.3783	-2.5834	-4.6600	.3	2	2	50.4152	2.1323	-6.2400	. 3543	- 9030	- 1070
3 3	17.4838	-2.1230	-4.6600	.4	2	1	58 4385	3 0641	-6.2400	.4009	- 8672	- 1866
3 4	18.5842	-1.4880	-4.6600	. 5	2	5	59 4400	3 6171	-6 2400	5012	- 8450	- 1859
3 5	19.6631	6876	-4.6600	. 6	3	1	55 4164	9762	-4 1600	2766	- 9424	- 1877
4 1	15.4301	-1.9213	-2.3300	. 2	3	2	56.4410	1.3118	-4.1600	.3407	9212	1878
4 2	16.5044	-1.5896	-2.3300	. 3	3	3	57,4619	1.7173	-4.1600	. 3935	8999	1876
4 3	17.5801	-1.0633	-2.3300	. 4	3	4	58.4776	2.1931	-4.1600	.4486	8740	1864
4 4	18.6402	3629	-2.3300		3	5	59.4873	2.7312	-4.1600	.4885	8525	1857
4 5	19.6688	.5010	-2.3300	. 6	4	1	55.4248	.1507	-2.0800	.2625	9465	1874
5 1	15.5180	9856	.0000	. 2	4	2	56.4543	.4710	-2.0800	.3269	9262	1876
5 2	16.5703	5897	.0000	. 4	4	3	57.4811	.8612	-2.0800	.3801	9057	1874
5 3	17.6122	.0005	.0000	. 5	4	4	58.5038	1.3219	-2.0800	.4355	8806	1862
5 4	18.6280	.7636	.0000	. 6	4	5	59.5214	1.8449	-2.0800	.4758	8597	1855
5 5	19.6026	1.6883	.0000	- 5	5	1	55.4209	6745	.0000	.2484	9503	1872
6 1	15.5492	0462	2.3300	. :	5	2	56.4551	3696	.0000	.3131	9310	1873
6 2	16.5756	.4125	2.3300	. 4	5	3	57.4875	.0053	.0000	.3665	9113	1872
63	17.5800	1.0648	2.3300	. 5	5	4	58.5170	.4506	.0000	.4224	8870	1860
6 4	18.5479	1.8879	2.3300	. 6	5	5	59.5423	.9584	.0000	.4629	8667	1853
65	19.4648	2.8696	2.3300	- 7	6	1	55.4047	-1.4994	2.0800	.2342	9540	1870
7 1	15.5236	.8936	4.6600	.:	6	2	56.4433	-1.2099	2.0800	.2992	9356	1871
7 2	16.5204	1.4136	4.6600	. 5	6	3	57.4812	8503	2.0800	.3529	9167	1870
					6	4	58.5172	4204	2.0800	.4091	8933	1858
					6	5	59.5500	.0720	2.0800	.4500	8736	1851
					1	1	55.3/63	-2.3237	4.1600	.2200	95/4	1868
					4	2	50.4190	-2.049/	4.1600	.2052	9400	1069
					'	3	59 5045	-1.2012	4.1600	3059	- 8005	1008
									4.1000		- 077.)	

STEP 5: GAMA measurement

Measurement of manufacturing deviation of pinion and gear

STEP 5: GAMA measurement

Measurement of manufacturing deviation of pinion and gear

Left flank Right flank **Gleason Metrology Systems** Gleason Metrology Systems CORPORATION CORPORATION Part Number DCT150 Z11 Mod Operator M E COWAN 31.9 mm Part Number DCT150_Z11_Modi Operator M E COWAN 11 Pd 31.9 mm Date 6/15/2020 Mr 2.76/15/2020 Mn Date 2.7 Job Numbe Time 2:32:00 PM Job Numb 2-32-00 PM Serial Number ISO F Index Location Gleason Metrology Systems Gleason Metrology Systems Journal Reference nce CORPORATION CORPORATION Units Part Number DCT150 Z40 Modi Operator M E COWAN Z 40 Pd 116 mm Part Number DCT150 Z40 Modi Operator M E COWAN Z 40 Pd: 116 mm 5 TC1M 6/15/2020 Mn 6/15/2020 Mn 2.7 Date 2.7 Date Job Numbe Time 3:13:00 PM Job Number Time 3:13:00 PM Count Pressure Angle Error (minut Spiral Angle Error (minutes) Serial Numbe ISO Flank Conv-1 20.6 mm Serial Number ISO Flank Conv-1 20.6 mm 5-3 Process Index Location 5-3 Process Index Location Warp Factor (minutes per 1) Journal Reference Off Part Journal Reference Off Part (mm) Gama/Chart Version 3.2.72.0/2.0.126.0 ale for (mm) Gama/Chart Version 3.2.72.0/2.0.126.0 Units Units Flank2 Average of 4 emen Probe Name TC1MM ge of 4 Flank2 Average of 4 Flank Measurement х Y Z Dev Flank1 Average of 4 -3.9698 55.2827 8.3200 - 00310 Y Dev х z 56 3331 -3 7269 8 3200 - 00164 57.3860 8.3200 -.00345 55.3635 -2.6098 8.3200 -.00417 -3.414056.3779 -2.9742 8.3200 -.00104 58,4402 -3.0308 8.3200 .00001 59.4939 -2.58498.3200 -.00405 57.3863 -3.4096 8.3200 .00050 58,3881 -3.90808.3200 00125 55.3356 -3.1472 6.2400 -.00198 59.3824 .00148 -4.46448.3200 56.3823 -2.8887 6.2400 -.00066 57.4305 -2.56036.2400 -.00260 55.3962 -1.7865 6.2400 -.00424 -2.1613 58,4788 6.2400 .00141 56.4158 -2.13586.2400 -.00043 59.5257 -1.69986.2400 -.00353 57,4307 -2.55616.2400 .00070 58,4398 -3 0396 6 2400 00089 55.3763 -2.32374.1600 -.00151 59.4422 -3.58126.2400 .00066 56.4190 -2.0497 4.1600 -.00059 57.4622 -1.7056 4.1600 -.00193 55.4166 -.9630 4.1600 -.00382 56,4414 58,5045 -1.29124.1600 .00121 -1.2972 4.1600 -.00081 57.4623 -1.7024-.00027 5 59.5444 -.8141 4.1600 -.00340 4.1600 58.4785 -2.1708 4.1600 .00065 55,4047 -1.4994 2.0800 -.00135 59,4889 -2.69744,1600 .00069 56.4433 -1.2099 2.0800 .00025 -.00437 57.4812 - 8503 2.0800 - 00062 55.4248 -.13962.0800 - 4584 56,4544 2.0800 58.5172 -.4204 2.0800 .00253 -.00143 59.5500 .0720 2.0800 -.00228 57.4812 -.8484 2.0800 -.00055 -5 58.5043 -1.30172.0800 00042 55.4209 -.6745 .0000 -.0010959.5224 -1.81332.0800 .00049 56.4551 - 3696 0000 00048 57.4875 55.4208 .0000 -.00375 0053 0000 00000 6835 4506 .00340 56.4550 .3800 -.00085 58.5170 .0000 .0000 .9584 .0000 57.4875 .0053 .00000 59.5423 -.00124 .0000 58 5172 -.4326 .0000 -.00058 55.4248 1507 -2.0800-.00155 -5 59.5428 - 9290 .0000 -.00003 5 4710 56.4543 -2.0800.00029 57.4811 .8612 -2.0800 .00016 55.4045 1.5063 -2.0800 -.00336 1.2182 58.5038 1.3219 -2.0800 .00393 56.4431 -2.0800 -.00038

STEP 6: Import measurement data to KISSsoft

Import the topological modification of manufacturing deviation into KISSsoft

Designed modification

Manufacturing deviation

Combined modification

STEP 6: Import measurement data to KISSsoft

Convert measured manufacturing deviation into topological modification

Flank2 C	Average of 4 L	×	Y	z	Dev		Poor	d in d	oviat	ionva		for o	ach (urid n	odo (vollo	w ore		
1	1 2 3 4 5	15.3022 16.2290 17.0991 17.9026 18.6272	2.7609 3.3974 4.2202 5.2044 6.3355	9.3200 9.3200 9.3200 9.3200 9.3200 9.3200	00235 00138 00289 00365 00226	-		nate	the e	dge v	alues	s usin	ig ext	rapo	lation	gre (gre	en ar	ea)	
2 2 2 2 2	1 2 3 4 5	15.4412 16.4047 17.3230 18.1845 18.9762	1.8305 2.4098 3.1784 4.1123 5.1975	6.9900 6.9900 6.9900 6.9900 6.9900	00247 00156 00208 00273 00186		DATA 1	-1 1.000	0.000 -1.999 -2 660	0.100 -1.779	0.200 -1.559	0.300 -1.237 -1.320	0.400 -0.384	0.500 -0.039	0.600 -0.331	0.700 0.567	0.800	0.900	1.000 -0.430 -0.540
3 3 3 3	1 2 3 4 5	15.5236 16.5204 17.4835 18.3999 19.2557	.8936 1.4136 2.1253 3.0054 4.0408	4.6600 4.6600 4.6600 4.6600 4.6600	00323 00132 00099 00156 00132		4 5 6 7	0.804 0.645 0.461	-2.000 4.570 -3.700 -1.200	-3.650 -2.890 -1.380	-2.730 -2.080 -1.560	-1.560 -0.990 -1.320	-0.330 -0.070 -0.610	-0.120 0.000 -0.570	0.100 -0.440 -0.990	0.150 0.310 -0.930	-0.0 30 -0.1 20 -1.2 50	-0.470 -1.010 -2.200	-0.340 -0.860 -1.900 -2.450
4 4 4 4	1 2 3 4 5	15.5492 16.5756 17.5800 18.5479 19.4648	0462 .4125 1.0648 1.8879 2.8696	2.3300 2.3300 2.3300 2.3300 2.3300 2.3300	00263 00061 00007 00033 00037	1	7 8 END	0.220	-3.220	-3.282	-3.344	-5.065	-4.571	-5.550	-5.303	-3.695	-3.4 21	-4.768	-6.117
5 5 5 5	1 2 3 4 5	15.5180 16.5703 17.6122 18.6280 19.6026	9856 5897 .0005 .7636 1.6883	.0000 .0000 .0000 .0000 .0000	00311 00057 .00000 00012 00006	-	· Subt	ract t	he m	axim	um fo	or all v	/alue	s to t	ransf	orm i	ntc n	egati	ve va
6 6 6 6	1 2 3 4 5	15.4301 16.5044 17.5801 18.6402 19.6688	-1.9213 -1.5896 -1.0633 3629 .5010	-2.3300 -2.3300 -2.3300 -2.3300 -2.3300	00319 00099 00044 .00010 00022	-	COLUMNS=13	h thic	knes	s cha	inge i	s ign	ored						
7 7 7 7 7	1 2 3 4 5	15.2859 16.3783 17.4838 18.5842 19.6631	-2.8496 -2.5834 -2.1230 -1.4880 6876	-4.6600 -4.6600 -4.6600 -4.6600 -4.6600	00234 00093 .00031 .00015 .00046		1 2 3	-1 1.000 0.972	0.000 -3.023 -3.684	0.100 -2.803 -3.284	0.200 -2.583 -2.884	0.300 -2.261 -2.344	0.400 -1.407 -1.394	0.500 -1.063 -1.084	0.600 -1.354 -1.244	0.700 -0.456 -0.564	0.000 0.000 -0.284	0.900 -0.726 -0.924	1.000 -1.453 -1.564
8 8 8	1 2 3	15.0860 16.1924 17.3237	-3.7673 -3.5675 -3.1747	-6.9900 -6.9900 -6.9900	00270 00195 00012		4 5 6 7	0.806 0.622 0.403 0.093	-5.593 -4.723 -2.224 -3.254	-4.674 -3.914 -2.404 -3 374	-3.754 -3.104 -2.584 -3 494	-2.584 -2.014 -2.344 -4 254	-1.354 -1.094 -1.634 -3.654	-1.144 -1.024 -1.594 -4 134	-0.924 -1.464 -2.014 -4 214	-0.874 -0.714 -1.954 -3 364	-1.104 -1.144 -2.974 -3 724	-1.494 -2.034 -3.224 -4 534	-1.884 -2.924 -3.474 -5.344
							8	0.000	-4 243	-4 305	-4 368	-6.088	-5 594	-6 574	-6 327	-4 718	-4 444	-5 792	-7 141

END

- Convert the values into positive as per KISSsoft format (positive value removes the material)

COLUMN	IS=13												
DATA													
	1	-1	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
	2	1.000	3.023	2.803	2.583	2.261	1.407	1.063	1.354	0.456	0.000	0.726	1.453
	3	0.950	3.684	3.284	2.884	2.344	1.394	1.084	1.244	0.564	0.284	0.924	1.564
	4	0.804	5.593	4.674	3.754	2.584	1.354	1.144	0.924	0.874	1.104	1.494	1.884
	5	0.645	4.723	3.914	3.104	2.014	1.094	1.024	1.464	0.714	1.144	2.034	2.924
	6	0.461	2.224	2.404	2.584	2.344	1.634	1.594	2.014	1.954	2.974	3.224	3.474
	7	0.226	3.254	3.374	3.494	4.254	3.654	4.134	4.214	3.364	3.724	4.534	5.344
	8	0.000	4.243	4.305	4.368	6.088	5.594	6.574	6.327	4.718	4.444	5.792	7.141
END													

STEP 6: Import measurement data to KISSsoft

User	User interface, tab «Modifications»							Create two variants of the microgeometry, one for "designed" and					
Basic data		5	Reference pro	ofile 🗗	Manufacturing	Tole	one for	"mea	asured"				
Chamfers and rour	ndings												
		Ge	ar 1	Gear 2									
Tip chamfer or rou	nding	Chamfer	~	Chamfer	~ 🕂 🚺		For the	"mea	asured".	import the			
Face chamfer	re chamfer Yes V				~ 🕂 i		measurement data						
Face chamfer, tip		Yes	~	Yes	~ 💌 📋		measur	eme	ni uala				
Gear	Flank		Modification t	ype	Value [µm]	Factor 1	Factor 2 S	Status	Information				
Gear 1	both		Tip relief, linea	ar	30.0000	0.9789	ad	ctive	dCa=159.	K Varianten definieren	? ×		
Gear 1	both		Profile crownin	ng, roll length-cent	ered 15.0000		ad	ctive	rcrown=78	Bezeichnung			
Gear 1	both		Crowning		20.0000		ac	ctive	rcrown=12	1 Designed			
Gear 2	both	K Topologi	sche Korrektur	importieren			>	< <u>-</u>	dCa=460.1	2 Measured			
Gear 2	both	Messmaschi	ne		Gleason			e	rcrown=10				
Gear 2	both	Messgitter-	Datei					e	CHβ=-10.0		ft Too		
		Reihenfolge	der Flanken in d	ler Messgitter-Datei	Rechte Flanke - Li	nke Flanke	~						
]		Zahnrad		Datent	ormat					OK	Cancel		
		Anzahl Spal	ten	0 Anzahl	Zeilen		0						
		Zahndicken	winkel				0.0000 °						
					Accept Save	Report Cal	culate Close	1					
								·					

STEP 7: Contact analysis results of designed & manufactured gear

Based on design / reference

Based on design / refere	ence
Weitere Modifikationen	
Variante für Berechnung	Ohne Modifikationen rechnen
Alle Varianten anzeigen	Ohne Modifikationen rechnen Designed
Variante Zahnrad Elanke Art der Modifikation Re	Measured

Results (Contact analysis)

		min	max	Δ	μ
Transmission error	(µm)	-29.8907	-26.5268	3.3639	-27.6108
Excitation force	(N)	3773.9648	4619.4325	845.4677	4357.9199
Tangents Stiffness curve	(N/µm)	190.1098	287.3960	97.2862	255.2770
Secants stiffness curve	(N/µm)	142.2260	158.9537	16.7277	152.8458
Line load	(N/mm)	0.0000	908.4017	908.4017	210.1171
Torque Gear 1	(Nm)	64.1451	64.1575	0.0124	64.1510
Torque Gear 2	(Nm)	224.1770	227.8568	3.6798	225.5483
Speed, gear 2	(1/min)	273.8453	275.9028	2.0575	274.9989
Power loss	(W)	155.8756	267.0384	111.1628	223.8706
Efficiency	(%)	96.0250	97.6797	1.6547	96.6676
Contact temperature	(°C)	74.5472	211.7577	137.2106	99.8802
Thickness of lubrication film	(µm)	0.0697	0.4525	0.3828	0.1493
Active flank area of usage (diameter) Gear 1	(mm)				2
Active flank area of usage (diameter) Gear 2	(mm)			-	w/w]
Hertzian pressure	(N/mm ²)				ડેન ટે
Tooth root stress gear 1 (graphical method)	(N/mm²)				2 I 2
Tooth root stress gear 1 (at 30° tangents)	(N/mm²)				č.
Tooth root stress gear 2 (graphical method)	(N/mm ²)	- 40		and the second	tzio
Tooth root stress gear 2 (at 30° tangents)	(N/mm²)				1 (Her
Safety against scuffing				210	ΛΛ
Transverse contact ratio under load	[εα]			-35.0	
	min			E-36.0 -	
	μ			ž -38.0 -	
	max				
	side I, II		1.1789 / 0.6316	E -41.0	
Overlap ratio under load	[εβ]		0.4316	₽ -43.0 -	
Total contact ratio under load (max)	[εγ]		1.6105	-44.0 -	
Sound pressure level (according to Masuda)	[dB(A)]		40.7		280 240 0 240

As manufactured / measured

Weitere Modifikationen

'ariante für Berechnung	Ohne Modifikationen rechnen 🗸 🗸
Alle Varianten anzeigen	Ohne Modifikationen rechnen Designed
Variante Zahnrad Elanke Art der Modifikation	Measured

Results (Contact analysis)

		min	max	Δ
Transmission error	(µm)	-25.7335	-23.0592	2.6743
Excitation force	(N)	3854.8716	4547.4769	692.6054
Tangents Stiffness curve	(N/µm)	206.5104	277.5245	71.0141
Secants stiffness curve	(N/µm)	165.2830	182.9532	17.6702
Line load	(N/mm)	0.0000	766.9575	766.9575
Torque Gear 1	(Nm)	64.1451	64.1571	0.0120
Torque Gear 2	(Nm)	224.3581	227.8073	3.4493
Speed, gear 2	(1/min)	273.9194	275.9095	1.9901
Power loss	(W)	158.4293	261.2482	102.8188
Efficiency	(%)	96.1112	97.6417	1.5305
Contact temperature	(°C)	74.5472	196.8750	122.3278
Thickness of lubrication film	(µm)	0.0498	0.4790	0.4292
Active flank area of usage (diameter) Gear 1	(mm)	1		
Active flank area of usage (diameter) Gear 2	(mm)	5		
Hertzian pressure	(N/mm ²)			The second
Tooth root stress gear 1 (graphical method)	(N/mm ²)			
Tooth root stress gear 1 (at 30° tangents)	(N/mm ²)			
Tooth root stress gear 2 (graphical method)	(N/mm ²)			
Tooth root stress gear 2 (at 30° tangents)	(N/mm ²)		Provide State	11

[εα]

min

μ

max

[εβ]

[εγ]

[dB(A)]

side I. II

Safety against scuffing

990.000 880.000

770.000 650.000

550.000

Angle of rotation (Gear A) [°]

Overlap ratio under load
Total contact ratio under load (max)
Sound pressure level (according to Masuda)

μ

-23.8161

4361.9107

257.3214

177.2691

210.1003

64.1505

225.6672

274.9990

PPTE and excitation force are lower with manufacturing deviation. This is rather exceptional and might be happening as the manufacturing deviation is very small.

	Min	Мах	Δ	μ	
	Without mfg. deviation / With mfg. deviation				
Power loss (W)	155.8756 / 158.4293	267.0384 / 261.2482	111.1628 / 102.8188	223.8706 / 220.3079	
Efficiency (%)	96.0250 / 96.1112	97.6797 / 97.6417	1.6547 / 1.5305	96.6676 / 96.7206	

Торіс	Parameters	Units	Theoretical gear	Theoretical gear with tolerance (Quality ISO 6)	Manufactured gear	Behavior of Mfg. to Theo. (*)
Noise / Vibration	Transmission error (PPTE)	μm	3.36	2.85 – 6.14	2.67	+
	1 st Harmonic (PPTE)	μm	0.573	0.573 – 1.946	0.353	+
	2 nd Harmonic/ 1 st Harmonic (PPTE)	-	1.373	0.627 – 1.373	1.642	-
	Sound pressure level (Masuda)	dB(A)	40.7	39.3 - 45.9	38.7	+
	Excitation force (Peak to Peak)	Ν	845.47	727.19 – 1480.28	692.61	+
Strength	Contact stress, mean	N/mm²	809	768 – 877	844	-
	Bending stress, Pinion, max / mean	N/mm²	377 / 155	344 – 538 / 155 – 195	342 / 161	~
	Bending stress, Gear, max / mean	N/mm²	309 / 174	254 – 355 / 174 – 191	283 / 173	~
	Scuffing safety	-	1.97	1.53 – 1.97	2.20	+
Efficiency	Power loss	W	224	224 – 249	220	+
	Efficiency	%	96.67	96.29 – 96.67	96.72	+

(*) Manufactured gear has (+: better, ~: same, -: lower) performance.

The manufactured gear has

- Lower transmission error and excitation force
- Lower sound pressure level because of the lower transmission error
- Slightly higher contact stress
- Almost same bending stress
- Slightly better efficiency

Note: In this example, the manufactured gear shows better behavior than the theoretical gear. This is rather exceptional but happens.

Summary

Performance characteristics of manufactured gear

Approach

- Design, manufacture, measure gear
- Designed gear geometry \rightarrow reference characteristics
- Manufactured gear geometry is measured and imported to KISSsoft → as is characteristics

Use cases

- Accept / reject batches of gears manufactured
- Selection of economical manufacturing process(es)
- Change design and / or manufacturing process for required performance characteristics

Characteristics of manufactured gear \rightarrow known

Designed gear / reference

Manufactured gear

Thank you for your attention!

Sharing Knowledge

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

Slide 26 | 6th October 2020 | KISSsoft Webinar Design - Manufacture - Measure