

# KISSsoft 2019 – Instruction 015

### KHb settings from KISSsys

T. +41 55 254 20 50 F. +41 55 254 20 51 info@KISSsoft.com www.KISSsoft.com

Sharing Knowledge

### Contents

| 3 |
|---|
|   |
|   |
| 5 |
|   |
| 7 |
|   |

## 1 Description

#### 1.1 Situation

It is not possible to set "KHb" (Face load coefficient) value automatically in details at the moment between KISSsoft modules. "KHb" can be calculated in details in shaft module, but the value needs to be manually transferred to the gear calculation and standard based value needs to be overwritten. In gear calculation some simple dimensions for the shaft and gear position can be anyway added to make the calculation according to the standard. These values can be operated from the KISSsys and shaft length and diameter can be taken from the shaft geometry. This allows user to do the calculation of the "KHb" with "real" values. Standard has some limitations for the gear arrangement and therefore this method can be only used in simple cases and therefore more detailed calculation is recommended to be done in shaft module.

### 2 Model setup

#### 2.1 TranslationTable

To be able to modify "I", "s" and "dsh" values for "KHb" calculation, "Own Input" needs to be flagged in gear calculation.

| Model | Basic data Reference profile Manufacturing Tolerances Ratin                                                                                                                                      | g Factors                                                                                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ □   | General factors Dynamic factor K <sub>v</sub> 1.0790                                                                                                                                             | Transverse load factor K <sub>Ha</sub> 1.4253                                                                                                                                                   |
| 🎭 GP2 | Alternating bending factor (mean stress influence coefficient) Predefined                                                                                                                        | Y <sub>M</sub> 1.0000 1.0000                                                                                                                                                                    |
|       | Face load factor       Calculation according calculation method       Tooth trace modification       None       Position of Contact pattern       favorable                                      | Type of pinion shaft     ISO 6336 Picture 13a < 1       Factor K' with stiffening     no                                                                                                        |
|       | Pinion sha<br>Bearing di<br>Distance<br>External d                                                                                                                                               | ace load factor ×                                                                                                                                                                               |
|       | Information  Tooth trac due to def due to def due to def due to def due to ma The Check button defines if you want to enter the value The Pacific button defines which values of a group checked | e deviation<br>formation (without tooth trace modification) $f_{sh0}$ 0.2049 µm<br>formation (with tooth trace modification) $f_{sh}$ 0.0000 µm<br>nufacturing $f_{ma}$ 10.2591 µm<br>OK Cancel |

Figure 1. Flag "Own inputs" to change values

Then new variable type "array" and named "TranslationTable" needs to be created for the calculation file.

| Model 🗗 🗙 Properties                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | 5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---|
| Model     B     Properties       Variables     Functions       GB     GB       GB     GD1       GB     GP2       CDP s1     SWmin_EQ_1       R     SWmin_LE_05       R     SWminUsed       R     T1       I     Info       Go     Input       Output     TTTol1       System     TypeOfLub       System     WoehlerType | Type       Array         Name       TranslationTable         Reference |   |

Figure 2. Creating a new array "TranslationTable" in the gearpair calculation

New variables to translate can be found from the protocol template.

| Name | KISSsoft name   |
|------|-----------------|
|      | ZP[0].KHdat.l   |
| S    | ZP[0].KHdat.S   |
| dsh  | ZP[0].KHdat.dsh |

Now open the report and check the description of the relevant variables:

#### General influence factors

|                                                        |         | Gear 1 Gear 2 |
|--------------------------------------------------------|---------|---------------|
| Nominal circum. force at pitch circle (N)              | [Ft]    | 492.4         |
| Axial force (N)                                        | [Fa]    | 86.8          |
| Radial force (N)                                       | [Fr]    | 182.0         |
| Normal force (N)                                       | [Fnorm] | 532.1         |
| Nominal circumferential force per mm (N/mm)            | [W]     | 32.83         |
| Only as information: Forces at operating pitch circle: |         |               |
| Nominal circum ferential force (N)                     | [Ftw]   | 500.0         |
| Axial force (N)                                        | [Faw]   | 86.8          |
| Radial force (N)                                       | [Frw]   | 159.9         |
| Circumferential speed reference circle (m/s)           | [V]     | 4.25          |
| Circumferential speed operating pitch circle (m/s)     | [v(dw)] | 4.19          |
| Running-in value (µm)                                  | [yp]    | 0.5           |
| Running-in value (µm)                                  | [yf]    | 0.5           |
| Correction factor                                      | [CM]    | 0.800         |
| Gear blank factor                                      | [CR]    | 1.000         |
| Basic rack factor                                      | [CBS]   | 0.975         |
| Material coefficient                                   | [E/Est] | 1.000         |
| Singular tooth stiffness (N/mm/µm)                     | [c']    | 9.411         |
| Meshing stiffness (N/mm/µm)                            | [сγα]   | 14.115        |
| Meshing stiffness (N/mm/µm)                            | [cγβ]   | 11.998        |
| Reduced mass (kg/mm)                                   | [mRed]  | 0.00415       |
| Resonance speed (min-1)                                | [nE1]   | 27855         |
| Resonance ratio (-)                                    | [N]     | 0.072         |
| Subcritical range                                      |         |               |
| Running-in value (µm)                                  | [γα]    | 0.5           |
| Bearing distance I of pinion shaft (mm)                | []      | 72.000        |
| Distance s of pinion shaft (mm)                        | [s]     | 51.000        |
| Outside diameter of pinion shaft (mm)                  | [dsh]   | 35.000        |

Figure 3. Variables to be changed from the report

Open the main-report .RPT file:

| 📄 Z01 | 2Le0.RPT                                                                    |
|-------|-----------------------------------------------------------------------------|
| 165   | 1 <execute=z010geometrye.rpt></execute=z010geometrye.rpt>                   |
| 166   | <pre>lIF (%i==0) {ZS.NurGeometrie}</pre>                                    |
| 167   | 9                                                                           |
| 168   | 5 <bf></bf>                                                                 |
| 169   | 5General influence factors                                                  |
| 170   | 5                                                                           |
| 171   | <pre>lIF (%i == 0) {ZS.AGMArech}</pre>                                      |
| 172   | <pre>lIF (%i) {RechSt.RechenMeth != 9}</pre>                                |
| 173   | // ISO. DIN. VDI General Factors                                            |
| 174   | 1 <execute=z010isogeneralfactorse.rpt></execute=z010isogeneralfactorse.rpt> |

Figure 4. Main-report.RPT

Search for the Z010GeneralFactorse.rpt file

| 2Le0.RPT 🗵 🔚 Z010ISOGeneralFactorse.rpt 🗵 |       |        |                   |
|-------------------------------------------|-------|--------|-------------------|
| <pre>lIF (%i==0) {Zst.KHbVariant}</pre>   |       |        |                   |
| 9Bearing distance 1 of pinion shaft (mm)  | [1]   | %10.3f | {ZP[0].KHdat.1}   |
| 9Distance s of pinion shaft (mm)          | [5]   | %10.3f | {ZP[0].KHdat.S}   |
| 9Outside diameter of pinion shaft (mm)    | [dsh] | %10.3f | {ZP[0].KHdat.dsh} |
|                                           |       |        |                   |

Figure 5. Variable names from KISSsoft protocol template

See more detailed information on the use of the "TranslationTable" in the instruction on the homepage "ins-006-TranslationTable.pdf".

### 2.2 Add variables

Add new variables to the gear-pair calculation:



Figure 6. Adding new variables I,s and dsh

#### 2.3 TranslationTable definition

When variable names and new variables in KISSsys are known, those can be added in the TranslationTable use following method for each new variable separated with comma:

["new variable in KISSsys","Variable name from KISSsoft"]

```
[["l", "ZP[0].KHdat.I"], ["s", "ZP[0].KHdat.S"], ["dsh", "ZP[0].KHdat.dsh"]]
```



i iguic 7. Tidli

#### 2.4 Expressions for the variables

Expression to the new variables can be then created to make them changeable automatically according to geometry.

Note: In the example only case "A" defined of pinion shaft configurations.



Figure 8. Pinion shaft configuration cases

Variable "I" pinion shaft bearing distance.

Expression for variable "I":

\_O.GB.s1.b2.position - \_O.GB.s1.b1.position

• Variable "s" is gear distance from the center of the bearings.

Expression for variable "s": I - (\_O.GB.s1.z1.position-\_O.GB.s1.b1.position)

• Variable "dsh" is shaft diameter in the place of the pinion.

Expression for variable "dsh":

kSoft\_RotCADDiameter(\_0.GB.s1.OBJ\_GetMember("outerGeometry"),\_0.GB.s1.z1.position)

| Model 🗗 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>✓ □</li> <li>✓ □</li> <li>✓ ○</li> <li>✓ □</li> <li>✓ □</li></ul> | Variables Functions     Type Real     Image: Real     Name     Name     Name     Reference     Value     Value <td< th=""><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Variables       Functions         Type       Real         I       SafetySizeDependent         I       savingMode         R       SB         R       SBmin         R       SBmin         R       SBmin_GE_2         R       SBmin_LE_05         I       SBmin_Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Properties       Image: Constraint of the second seco |   |

Figure 9. Definition of the expression of the variables "I", "s" and "dsh"

Once either shaft geometry is changed or position of the components are changed, new values for the "KHb" calculations are adopted and used in the gear calculation.

See also referenced model "015-KHb-settings-simplified.ks" for the functionality in KISSsys.

Note! This method is very much simplified and to do the "KHb" calculation precisely, select calculation method according to ISO 6336-1 Annex E, and use the shaft files (module "W10") from the gearpair calculation.

| Basic data Reference profile Manufacturing Tolerances Rating Factors                   |
|----------------------------------------------------------------------------------------|
| General factors                                                                        |
| Dynamic factor K <sub>V</sub> 1.0997                                                   |
| Z-Y factors                                                                            |
| Alternation banding factor (mean stress influence coefficient)                         |
|                                                                                        |
| Predefined Y <sub>M</sub> 1.0000 1.0000                                                |
| Face load factor                                                                       |
| Calculation without manufacturing allowance, according to ISO 6336-1 Annex E           |
| Axis alignment                                                                         |
|                                                                                        |
| K Define axis alignment (calculation of the face load factor)                          |
| Avia Signment Constants Tracing                                                        |
|                                                                                        |
| Important: All inputs here refer to the nominal load. I nom defined in the Rating tab. |
|                                                                                        |
| Constant Proportional (T <sub>1</sub> = 17.150 Nm)                                     |
| Shaft Gear 1 file necht\AppData\Local\Temp\KSYS_0\S2_A.w10                             |
| Deviation error of axis Gear 1 - Gear 2 f <sub>zp</sub> 0.0000 0.0000 µm               |
| Indination error of axis Gear 1 - Gear 2 fza 0.0000 0.0000 µm                          |
| Shaft Gear 2 file necht\AppData\Local\Temp\KSYS_0\S3_B.w10                             |
| Shaft/Gear suppress plausibility check                                                 |
| Permissible deviation Shaft/Gear 1.0000 %                                              |

Figure 10. Calculation of KHbeta according to ISO 6336-1 Annex E with using the shaft files